Researchers reveal novel digital to analog converter

Share this on social media:

A team of researchers from the George Washington University and University of California, Los Angeles, have created and demonstrated a photonic digital to analog converter without leaving the optical domain. 

Novel converters such as this could help to advance next-generation data processing hardware with high relevance for data centres, 6G networks, artificial intelligence and more. Current optical networks require a digital-to-analog conversion, which links digital systems synergistically to analog components.

Using a silicon photonic chip platform, Volker J. Sorger, an associate professor of electrical and computer engineering at George Washington University, and his colleagues created a  digital-to-analog converter that does not require the signal to be converted in the electrical domain. This, believes the team, shows the potential to satisfy the demand for high data-processing capabilities while acting on optical data, interfacing to digital systems, and performing in a compact footprint, with both short signal delay and low power consumption.

Said Sorger: ‘We found a way to seamlessly bridge the gap that exists between these two worlds, analog and digital. This device is a key stepping stone for next-generation data processing hardware.’

A schematic diagram of the transmission system (NICT)

19 July 2021

Schematic of the USRN compressor system and comparison with other CMOS-chip based temporal compressors / Light: Science & Applications ISSN 2047-7538 (online) / Choi, J.W., Sahin, E., Sohn, BU. et al. High spectro-temporal compression on a nonlinear CMOS-chip. https://doi.org/10.1038/s41377-021-00572-z

08 July 2021

Recent News

01 June 2021

UK incumbent operator, BT has begun trials of hollow core fibre in collaboration with start-up and Southampton University spin out, Lumenisity, and Open-RAN mobile vendor Mavenir.

14 April 2021

Bandwidth infrastructure firm, euNetworks has deployed a new business network in London, based on hollow core fibre technology.

11 February 2021

Researchers from Duke University and Facebook’s Connectivity Lab have created a new plasmonic metasurface that achieves record high light efficiency over the entire centimetre-scale metasurface.

08 February 2021

Southern Cross Cable and Bulk Fiber Networks have selected coherent optical solutions to enhance their latest submarine cables.