Viewpoint

10 March 2016

A new and welcome trend that has emerged sees utility companies using their existing infrastructure and pre-existing utility ducts in innovative ways to provide customer connections. This trend is obviously driven by the desire to eliminate the cost of installation, which can ultimately make or break any FTTH project…

1 March 2016

Modern high bit rate optical communication channels now use polarization, amplitude and phase of the optical carrier to encode digital information. The future of optical communication requires Optical Arbitrary Waveform Generation (O-AWG). The ability to produce any kind of optical waveform, through the use of an optical modulator and an electrical AWG requires better accuracy and reliability than ever before. O-AWG’s require full control of an optical modulator, including the ability to bias at any arbitrary point on the modulator's electrical-to-optical transfer functions. The needs of the research and development community are ever changing and a truly arbitrary O-AWG will be as necessary to the optical R&D engineer as is the electrical AWG is for the RF engineer.

2 October 2015

Service providers are moving towards mesh-based transport networks, and the latest technological advance is the standards-based Shared Mesh Protection, which leverages an intelligent GMPLS control plane so a meshed transport network can recover from multiple local and network-wide failures while lowering costs by avoiding the need to dedicate backup bandwidth for every active circuit. This article will examine hardware-accelerated Shared Mesh Protection as a means of increasing the network resiliency without incurring additional fiber-related expenses.

Pages